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ABSTRACT 

An analysis of spaceborne vehicle proaming is deacribed. Generic crew-EVA tasks are 

presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general 

implications to other onsrbit vehicles. The OMV is examined with respect to both 

servicing and maintenance. Crew-EVA activities are presented by taslr and mapped to 

a common set of generic crew-EVA primitives to identify high-demand areas for telerobot 

services. Similarly, a set of telerobot primitives is presented that can be uaed to model 

telerobot actions for alternative telerobot reference configurations. The telerobot 

primitives are tied to technologies and used for composing telerobot operations for an 

automated refueling scenario. Telerobotica technology issues and design accommodation 

guidelines (hooks and scars) for the Space Station Freedom are described. 
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INTRODUCTION 

The development of Space Station Freedom involves a multiplicity of largoscale space 

system and a number of space vehicles are required to support a broad variety of station 

operations. Most prominent are the Orbital Maneuvering Vehicle (OMV) for near-Earth 

operations and the Space Transfer Vehicle (STV) for near-Earth and Earth-Lunar 

operatiom. Becawe the rbtion and these vehicles are at variou stages of development, 

there b a twofold i n k w t  in examining the potentid for applications of robotics 

technology'to vehicle procaming. The fimt interest b in undemtanding the functional 

operations to be performed in the future station environment. The second interest is in 

undemtanding the potentid design accommodations that robotics might require of the 

station-the so-called hooks (software accommodations) and (hardware 

accommodations) needed to ensure that future technology developments can be 

accommodated by Space Station Freedom. 
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ANALYSIS OF VEHICLE PROCESSING OPERATIONS 

Space operations will involve large quantitier of crew-EVA to perform a variety of 

tasks such assembly, servicing, maintenance, and inspection. The requirements for 

housekeeping and servicing are typically stated in krma of budgeted crew-EVA houm for 

the tasks involved. Simply stated, EVA requiremenb are the Ywork” that needs to be 

performed to keep the  pacec craft ~ y u k m  in operational order and perform ita mkion(s). 

The tank anal- sake  to optimize available EVA excumion time by planning in 

detail, the primitive s u b b r b  to be performed. The term ubcd for these human- 

performed primitive rubtasb in ‘%rew-EVA primitives.” In a similar hhion, a set of 

”telerobotp’ primitives is defined for machine performance of tasks. The telerobot 

primitives are linked to technologies and amembled into proccdurts for 

performance of telerobot operations. The study atabliihes a common language to better 

understand the relatiomhip between generic crew-EVA tasb and potential telerobot 

performance of such activities. 
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METHODOLOGY 

The starting point for development of the study methodology was to coll.ect empirical 

descriptions of the performance of a number of crew-EVA tasks, including 'timeline 

data" that records the duration of succmive negmenta of each task from Space Shuttle- 

based E V h .  The andpia p r o c d  hierarchically from projected taak demanda for user 

payloadti and station and vehicle servicing and maintenance to the definition of generic 

crew-EVA bska, activities, and primitives. A set of crew-EVA primitives are defined and 
each EVA task is segmented into a betup, kernel, and cloaout activities. The crew-EVA 

primitive eet is uaed to calibrate a generic model for estimating the EVA impacts of the 

given task: 

activity, and primitive levels: 

SSF Howekeping Vehicle Proemsing (OMV) 
o T r m h m b l y  (SSF) o Trum A b l y  (Planetary Vehicle) 
o ORU Changeout (SSF) o ORU Changeout (on OMV) 
o Payload Changeout o Servicing (OMV refueling) 
o Servicing/Fi.epair o Payload Integration 

Thia study developed the following generic crew-EVA tasks at the task, 
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STATION-BASED OMV SERVICING TIMELINE 
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MM'HODOLOGY AND RESULTS 

Thb figure illwtraks the analy8is proceao for a portion of- the OMV servicing timeline by 

aligning the crew-EVA aad equivalent teluobot-EVA primitives on the same timescale. 

Becwse of limibtiom inherent to the machhaperformd task, the quantity of 

amsumptiom, daxriptionn, and definition8 b inherently larger. The objective of this 

proam ia to explicitly map the telerobot operational timeline in order to surface 

technology and operational limih. The model ubcd to estimate the generic crew-EVA 

times for each task, activity, and primitive ix 

where: 

Xk. 
I 

Xk.. E Taak kernel time (houm) for activity j, category i, and time intewd t. 
U 

X i .  I Teardown time (hours) for activity j within time period t. 
J 

Y s Totd $me for crew-EVA excursion number j within time interval t. 

Note that the actual times, X 
times and frecluency of occumnk! 

Setup time (hours) for activity j within time period t. 

, are a u m  of the product of task primitive standard 

where, n = the total number of hsL primitives 
r m  

'(*I, 

= standard time to perform task primitive m (minutes). 
= frequency of task primitive m for * = 5, K, or 1. 

By dividing generic task times into standardized times multiplied by frquency, a 

standardized timeline is obtained for each of the generic crew-EVA tasks. The 
standardized times are a powerful result that can be extended to other tasks. The 
problem of calculating task times is thur tranaformed from estimating highly variable 

task-8pedic timca to one of estimating the number of t ima each generic task ia to be 

performed. 
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RESULTS (CONTINUED) 

Because there are empirid data on which to stAndardie the generic crew-EVA activities 

and primitives, time estimates for each of the generic t a k a  is &hated probabiliitically 

using the above model. This figure illustrab the proportion of time spent performing 

each crew-EVA primitive M a fraction of the total EVA d o n  time. Such anal- 

focus attention on promising areas for telerobot operatiom such s4 translation, 

monitoring (inspection), and selected opening and doeing manipulations. 
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fianslate (via Handholds) Select mode, Configure, Acquire, 
Range,Translate 
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P Secure (tethers) 

Open (door) 

Select (tools, periph.) -. 

Unstow (tools, periph.) 

Configure (toolboard) 

Inspect (periph.1 

Release (tether) 

Select Mode, Configure, Acquire (grapple fixture), 
Locate, Move, Grapple 

It ir-d that grapple fixhrrss will be required at the 
tool sits to rtabilia the robot during tool selection. This 
ir equivalent to tetherring, uaed by EVA 
mwmemberm to .tabilia thmmlves. 

Acquirddwr handle), Locate, Move, 
h w ,  open, Ungrasp 

Itir ammedthat tool. willbe .toladinside a 
tool &net which io aco~uod by means of a 
hinged door. 

Acquire (tools, periph.), Locate, 
“his activity o c m n  in conjunction with 
unsbwhg. It addmmem the time element 
involved in recognizing the toolb) being 
searched for. The robot will mcognize the tool 
by me- of matching the s e d  image with an 
imegb in the robotr tool libray. 

Move, Grasp, Detach, Extract (from tool cabinet) 
Tools are aaumed to be d within the tool 
cabinet either by meanm of a snap idout 
arrangement, cr by meam of a velm interface. 

Acquire (toolboard), Locate, Attach (tools to 

Thio involver attaching tadr & equipment 
to the EMU m toolbovd by means of short 
b t h  or Velcro. 

tool-board or EMU) 

Inspect 

Release (grapple fixture), Withdraw 
EVA crewmembers will unbther to h e  
themllelw iiml reatnun * t. .m robot will 
merely releam the grapple firture. 



RESULTS (CONTINUED) 
~~ ~ ~ 

This figure illustrates the frequency of telerobot primitives for the et-up phase of the 

generic OMV servicing taek. Because there is little, if any, analogous timeline data for 

telerobot operations, the frequency of primitive occurrence in ubed aa o guidepoet to 

promising telerobot primitives for advanced development. Telerobot primitives with 

high frequencies may be the initid candida- for autonomoua operation, however, aa 

specific time d i m &  for telerobot performance become available from laboratories and 

test ftight memuremenb, improved projections of high-value functions for autonomous 

operations will be possible. 
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CONCLUSIONS: RECOMMENDED ROBOT DESIGN FEATURES 

There are a number of design features that, if incarporated into the station design, will 

enhance considerably, the ability of the station to accommodate new robotic technologies 

in the future. Thea condusiom are an attempt to characterize the major impact areas 

for robot hooks and ~KJKIL 
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RECOMMENDED ROBOTIC DESIGN FEATURES 
FOR SPACE STATION FREEDOM TO SUPPORT A&R 

Autonomous translation of mobile robotic devices and supporting 
structures (e.g., MSC, MRMS) may require position location sensors 
embedded in truss members, laser ranging devices on the vehicle and 
at locations on the station, or other built-in aids to tracking precise 
location over time. 

Payload retention interfaces used on STS, SIA, O W ,  servicing facility, 
etc, should be standardized to minimize on-orbit reconfiguration req'ts. 

Remotely operated latches with manual over-ride should be used for 
payload retention to facilitate robotics. Manual ovemdes should be robot 
operable. ' 

Where built-in automatic umbilical mating/demating devices are not 
employed, umbilicals should be robot compatible and located where 
adequate space is available for access and manipulation, and 
robot retention fbctures should be availible for anchoring the robot. 

Peripherals (lights, cameras) and foot restraints should be compatible 
for robot manipulation and installation as a PMC Phase I capability. 

Power/data umbilical matlng between the SSF OMV berthing facility 
and the O W  should be enabled to be performed remotely to reduce EVA. 

Data  storage & processing requirements increase significantly 
with A&R evolution (i.e., worksite modeling, planning systems. 
system test/monitoring/fault diagnosis, etc). Hardware & software 
should be expandable, modifiable (flexible). 

Since flexible covers & tape are difficult for robots to handle, making 
thermal covers an integral ORU component or designing the cover for 
easy removal & installation will facilitate robotic efficiency. 

Design robot compatibility into ORU & tool storage 
- Easy access by RMS & robot 
- Docking points for robot stabilization 
- Visual alignment guides on ORUs, tools, & storage facilities 

- Record of removal and replacement (inventory control) 
to reduce precision requirements & force sensing complcdty 

EVA hand & power tools should be robot cornpatibile. at least to 
the level of enabling human or robotic stowing or retrieval (robots 
may work more effectively with their own tools). 



CONCLUSIONS: RECOMMENDED OMV DESIGN FEATURES FOR RCIBOTICS 

There are a h  a number of design featurea that would enhance the functionality of 

performing vehicle servicing robotidly. T h i  figure mmmatisa ruch features. 
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RECOMMENDED ROBOTIC DESIGN FEATURES 
FOR SPACE STATION FREEDOM TO SUPPORT A&R 

~ 

ON-ORBIT O W  REFUELING ;. 
On-orbit transfer of hazardous fluids from one tank to another 
must be accomplished using remotely operated equipment with 
manual over-rides. 

Scar the OMV to facilitate remote/robotic refueling: 

n 

i 

- Manifol'd the cold gas system to provide single point recharge capability 

- Co-locate hydrazine, cold gas, & electrical connectors (accessible by 
an automatic coupling device) 

- Use standard interfaces for fluid connectors, plugs, etc. 

- Design protective/thermal covers on O W  refueling & electrical ports 
to be retracted automatically by the umbilical coupling device 

- Scar the OMV propulsion module for automatic on-orbit refueling 
(i.e., colocated refueling ports designed for automatic umbilical mating) 

. 


